D 2020

COMPARISON OF MINING PREDICTION WITH REAL MINING AS A TOOL FOR STRATEGIC MANAGEMENT

PAWLICZEK, Adam, Lenka TKAČÍKOVÁ, Ladislav MORAVEC, Daniela NAVRÁTILOVÁ, Renáta PAVLÍČKOVÁ et. al.

Základní údaje

Originální název

COMPARISON OF MINING PREDICTION WITH REAL MINING AS A TOOL FOR STRATEGIC MANAGEMENT

Autoři

PAWLICZEK, Adam (203 Česká republika), Lenka TKAČÍKOVÁ (203 Česká republika, domácí), Ladislav MORAVEC (203 Česká republika, domácí), Daniela NAVRÁTILOVÁ (203 Česká republika, domácí) a Renáta PAVLÍČKOVÁ (203 Česká republika, domácí)

Vydání

Bulharsko, 20th International Multidisciplinary Scientific GeoConference SGEM 2020, od s. 43-50, 8 s. 2020

Nakladatel

International Multidisciplinary Scientific Geoconference SGEM

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

50204 Business and management

Stát vydavatele

Bulharsko

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/26867184:_____/20:N0000030

Organizační jednotka

Moravská vysoká škola Olomouc

ISBN

978-619-7603-06-4

ISSN

Klíčová slova anglicky

Econometric models; comparison of results; managerial decisions; strategic management

Štítky

Změněno: 5. 5. 2021 13:12, Ing. Michaela Nováková

Anotace

V originále

This paper responds to published scientific papers which compile econometric models of extraction of selected mineral resources. Mining prediction models can be new tools to increase the competitiveness of mining enterprises. Comparing the results of mining prediction and real data is important for further research on the issue. Specification of the results will lead to better managerial decisions in strategic and operational management. The results of the paper can lead to the clarification of the so-called random component in econometric models and the refinement of the assembled models. Random components are different from macroeconomic indicators. These components cannot be quantitatively captured in calculations in terms of econometric models. These components are influenced by the economic models of the mineral extraction prediction. The aim of the paper is to estimate random components in the future when using mining predictions as support for managerial decisions. Other mining activities may react differently to other random components.