2025
On a new concept of controllability of second-order semilinear differential equations in Banach spaces
PAVLAČKOVÁ, Martina a Valentina TADDEIZákladní údaje
Originální název
On a new concept of controllability of second-order semilinear differential equations in Banach spaces
Autoři
PAVLAČKOVÁ, Martina a Valentina TADDEI
Vydání
AIMS - American Institute of Mathematical Sciences, 2025, 2156-8472
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.900 v roce 2024
Organizační jednotka
Moravská vysoká škola Olomouc
UT WoS
001400213800001
EID Scopus
2-s2.0-105003427274
Klíčová slova anglicky
Second-order Cauchy problem; Banach spaces; controllability; cosine family; approximation solvability method; mild solution
Změněno: 25. 11. 2025 13:13, Ing. Michaela Nováková
Anotace
V originále
In this paper, the controllability of second-order problems in Banach spaces is investigated when the nonlinear term also depends on the first derivative. The main aim of the paper is to introduce the definition of controllability for second-order problems in Banach spaces that considers both the solution and its derivative at the final point using a unique control and to obtain sufficient conditions for such controllability. Our main results are derived by combining the Schauder fixed point theorem with the approximation solvability method and weak topology. This approach allows us to obtain results under easily verifiable and non-restrictive conditions imposed on the cosine family generated by the linear operator and on the right-hand side since any requirements for compactness are avoided. The paper concludes by applying the obtained results to a system governed by the one-dimensional Klein-Gordon equation.