2023
The damped vibrating string equation on the positive half-line
PAVLAČKOVÁ, Martina a Valentina TADDEIZákladní údaje
Originální název
The damped vibrating string equation on the positive half-line
Autoři
PAVLAČKOVÁ, Martina (203 Česká republika, domácí) a Valentina TADDEI (380 Itálie)
Vydání
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 1007-5704
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizační jednotka
Moravská vysoká škola Olomouc
UT WoS
001079725700001
Klíčová slova anglicky
Damped vibrating string equation; Second-order Cauchy problem; Banach spaces; Fundamental systém; Approximation solvability method; Mild solution
Štítky
Změněno: 27. 3. 2024 10:52, Ing. Michaela Nováková
Anotace
V originále
In this paper, the existence of a solution to the problem describing the small vertical vibration of an elastic string on the positive half-line is investigated in the case when both viscous and material damping coefficients are present. The result is obtained by transforming the original partial differential equation into an appropriate abstract second-order ordinary differential equation in a suitable infinite dimensional space. The abstract problem is then studied using the combination of the Kakutani fixed point theorem together with the approximation solvability method and the weak topology. The applied procedure enables obtaining the existence result also for problems depending on the first derivative, without any strict compactness assumptions put on the righthand side and on the fundamental system generated by the linear term. The paper ends by applying the obtained result to the studied mathematical model describing the small vertical vibration of an elastic string with a nonlinear Balakrishnan–Taylor-type damping term.