J 2023

The damped vibrating string equation on the positive half-line

PAVLAČKOVÁ, Martina a Valentina TADDEI

Základní údaje

Originální název

The damped vibrating string equation on the positive half-line

Autoři

PAVLAČKOVÁ, Martina (203 Česká republika, domácí) a Valentina TADDEI (380 Itálie)

Vydání

COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 1007-5704

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Moravská vysoká škola Olomouc

UT WoS

001079725700001

Klíčová slova anglicky

Damped vibrating string equation; Second-order Cauchy problem; Banach spaces; Fundamental systém; Approximation solvability method; Mild solution

Štítky

Změněno: 27. 3. 2024 10:52, Ing. Michaela Nováková

Anotace

V originále

In this paper, the existence of a solution to the problem describing the small vertical vibration of an elastic string on the positive half-line is investigated in the case when both viscous and material damping coefficients are present. The result is obtained by transforming the original partial differential equation into an appropriate abstract second-order ordinary differential equation in a suitable infinite dimensional space. The abstract problem is then studied using the combination of the Kakutani fixed point theorem together with the approximation solvability method and the weak topology. The applied procedure enables obtaining the existence result also for problems depending on the first derivative, without any strict compactness assumptions put on the righthand side and on the fundamental system generated by the linear term. The paper ends by applying the obtained result to the studied mathematical model describing the small vertical vibration of an elastic string with a nonlinear Balakrishnan–Taylor-type damping term.