J 2022

Bound Sets Approach to Impulsive Floquet Problems for Vector Second‑Order Diferential Inclusions

PAVLAČKOVÁ, Martina a Valentina TADDEI

Základní údaje

Originální název

Bound Sets Approach to Impulsive Floquet Problems for Vector Second‑Order Diferential Inclusions

Autoři

PAVLAČKOVÁ, Martina (203 Česká republika, domácí) a Valentina TADDEI

Vydání

Differential Equations and Dynamical Systems, 2022, 0971-3514

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10102 Applied mathematics

Stát vydavatele

Indie

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Moravská vysoká škola Olomouc

UT WoS

000737089900001

Klíčová slova anglicky

Impulsive Floquet problem; Upper-Carathéodory diferential inclusions; Bounding functions; Liénard type equation

Štítky

Změněno: 17. 2. 2023 10:36, Ing. Michaela Nováková

Anotace

V originále

In this paper, the existence and the localization of a solution of an impulsive vector multivalued second-order Floquet boundary value problem are investigated. The method used in the paper is based on the combination of a fixed point index technique with bound sets approach. At first, problems with upper-Carathéodory right-hand sides are investigated and it is shown afterwards how can the conditions be simplified in more regular case of upper semi-continuous right hand side. In this more regular case, the conditions ensuring the existence and the localization of a solution are put directly on the boundary of the considered bound set. This strict localization of the sufficient conditions is very significant since it allows some solutions to escape from the set of candidate solutions. In both cases, the C1 -bounding functions with locally Lipschitzian gradients are considered at first and it is shown afterwards how the conditions change in case of C2 -bounding functions. The paper concludes with an application of obtained results to Liénard-type equations and inclusions and the comparisons of our conclusions with the few results related to impulsive periodic and antiperiodic Liénard equations are obtained.