YDIP_UIM Differential and Integral Calculus

Moravian Business College Olomouc
summer 2020
Extent and Intensity
20/0/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
RNDr. Vladimíra Mádrová, CSc. (lecturer)
doc. RNDr. Martina Pavlačková, Ph.D. (lecturer)
Mgr. Veronika Říhová, Ph.D. (lecturer)
RNDr. Vladimír Slezák, Ph.D. (lecturer)
Mgr. Jan Wossala, Ph.D. (lecturer)
Guaranteed by
Mgr. Jan Wossala, Ph.D.
Moravian Business College Olomouc
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Cílem předmětu je seznámení studentů s diferenciálním a integrálním počtem funkce jedné a více proměnných a jejich aplikacemi. Student po ukončení semestru správně chápe pojem funkce a uvědomuje si užitečnost funkcí pro popis vztahů mezi jednotlivými veličinami, rozpoznává a charakterizuje základní vlastnosti funkcí. Pro funkce jedné i více proměnných bezpečně určuje definiční obory funkcí, definuje limitu funkce, zná vlastnosti limit a umí počítat limity rozličných funkcí, rozumí pojmu spojitosti funkce. Chápe a umí definovat derivaci funkce, rutinně zvládá výpočet derivací rozmanitých funkcí, chápe geometrický význam derivace. Zvládá aplikaci všech vědomostí diferenciálního počtu. Pro funkci jedné proměnné definuje primitivní funkci a neurčitý integrál, má osvojeny základní integrační metody. Pro funkce jedné a více proměnných rozumí způsobu konstrukce určitého integrálu, ovládá jeho základní vlastnosti a výpočet. Je schopen využít vědomosti integrálního počtu při řešení základních geometrických a fyzikálních úloh.
Syllabus (in Czech)
  • Obsah předmětu:
    1. Funkce jedné proměnné. (Vlastnosti funkcí. Elementární funkce a funkce k nim inverzní. Logaritmické
    a exponenciální funkce. Cyklometrické funkce.)
    2. Limita funkce. Spojitost funkce. (Definice limity funkce. Pravidla pro výpočet limit funkce. Definice spojitosti. Typy nespojitosti.)
    3. Derivace funkce. (Definice derivace funkce a její geometrický význam. Pravidla pro počítání s derivacemi Diference a diferenciál.)
    4. Aplikace diferenciálního počtu (l`Hospitalovo pravidlo, vyšetřování průběhu funkce.)
    5. Neurčitý integrál. (Pojem primitivní funkce Vzorce pro integraci elementárních funkcí. Substituční metoda, metoda per partes.)
    6. Určitý integrál. (Definice Riemannova určitého integrálu. Newton-Leibnizova věta pro výpočet určitého integrálu. Substituční metoda a metoda per partes pro určitý integrál.
    7. Nevlastní integrály. (Nevlastní integrál 1. druhu. Nevlastní integrál 2. druhu.)
    8. Aplikace integrálního počtu. (Geometrické aplikace určitého a nevlastního integrálu.)
    9. Funkce více proměnných. (Základní definice, limita a spojitost.)
    10. Parciální derivace a totální diferenciál. (Definice, pravidla pro derivování, užití totálního diferenciálu.)
    11. Extrémy funkce více proměnných. (Lokální a globální extrémy.)
    12. Funkce daná implicitně. (Definice, derivace a vázané extrémy.)
    Bloková výuka:
    Bloková výuka: I. blok - témata 1. - 3., II. blok - témata 4. - 6., III. blok - témata 7. - 8., IV. blok - témata 9. - 10.,
    V. blok - témata 11. - 12.
Literature
    required literature
  • MÁDROVÁ VLADIMÍRA A VRATISLAVA MOŠOVÁ. Diferenciální počet 1. Olomouc: Moravská vysoká škola Olomouc, 2018. info
  • MÁDROVÁ VLADIMÍRA. Diferenciální počet 2. Olomouc: Moravská vysoká škola Olomouc, 2018. info
  • MÁDROVÁ VLADIMÍRA A VRATISLAVA MOŠOVÁ. Matematická analýza. Olomouc: Moravská vysoká škola Olomouc, 2018. info
  • KOPÁČEK, J. Matematická analýza nejen pro fyziky (I). Praha: Matfyzpress, 2016. ISBN 978-80-7378-323-5. info
  • ZDRÁHAL, T. a I. HRALOVÁ. Matematika I. Ústí nad Labem: Univerzita J.E. Purkyně v Ústí n, 2012. ISBN 978-80-741-4533-9. info
  • DRÁBEK, P. a S. MÍKA. Matematická analýza I. Plzeň: Západočeská univerzita v Plzni, 2003. ISBN 978-80-7082-978-8. info
  • DRÁBEK, P. a S. MÍKA. Matematická analýza II. Plzeň, Západočeská univerzita v Plzni, 2003. ISBN 978-80-708-2977-X. info
    recommended literature
  • MÁDROVÁ, V. a J. MAREK. Sborník úloh z diferenciálního počtu v R: (364 řešených příkladů a 1111 cvičení). Olomouc: Univerzita Palackého v Olomouci, 2013. ISBN 978-80-244-3410-0. info
  • MOŠOVÁ, V. Matematická analýza II: posloupnosti a řady funkcí, funkce více proměnných. Olomouc: Univerzita Palackého,, 2005. ISBN 978-80-244-1005-2. info
  • DĚMIDOVIČ, B. P. Sbírka úloh a cvičení z matematické analýzy. Praha: Fragment, 2003. ISBN 978-80-244-3410-0. info
  • MOŠOVÁ, V. Matematická analýza I: diferenciální a integrální počet funkce jedné proměnné. Olomouc: Univerzita Palackého, 2002. ISBN 978-80-244-0464-8. info
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: Přednáška 20 HOD/SEM.
Teacher's information
https://teams.microsoft.com/l/team/19%3afea968adda204caa906304995b2eff3b%40thread.tacv2/conversations?groupId=a21b5913-e395-404d-9aed-5b860fcb05b8&tenantId=ed27fc21-8d98-4df9-af69-7fce8cea652b
The course is also listed under the following terms summer 2019.
  • Enrolment Statistics (recent)
  • Permalink: https://is.mvso.cz/course/mvso/summer2020/YDIP_UIM