XUIM0164 Matematika 2

Moravská vysoká škola Olomouc
léto 2019
Rozsah
2/2/0. 5 kr.
Garance
Mgr. Veronika Říhová, Ph.D.
Moravská vysoká škola Olomouc
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Student po ukončení semestru správně chápe pojem funkce a uvědomuje si užitečnost funkcí pro popis vztahů mezi ekonomickými veličinami, rozpoznává a charakterizuje základní vlastnosti funkcí, bezpečně určuje definiční obory funkcí a identifikuje základní elementární funkce. Definuje vlastní i nevlastní limitu funkce ve vlastním i nevlastním bodě, zná vlastnosti limit a umí počítat limity rozličných funkcí, rozumí pojmu spojitosti funkce. Chápe a umí definovat derivaci funkce, rutinně zvládá výpočet derivací rozmanitých funkcí, chápe geometrický význam derivace. Ovládá l´Hospitalovo pravidlo při výpočtu limit, zvládá aplikaci všech vědomostí diferenciálního počtu při studiu průběhu funkce a umí sestrojit její graf. Definuje primitivní funkci a neurčitý integrál, má osvojeny základní integrační metody. Rozumí definici určitého integrálu a ovládá jeho základní vlastnosti a výpočet. Je schopen využít vědomosti integrálního počtu při řešení základních geometrických úloh.
Osnova
  • Obsah předmětu:
    1. Funkce jedné proměnné. (Vlastnosti funkcí. Elementární funkce a funkce k nim inverzní. Logaritmické
    a exponenciální funkce. Cyklometrické funkce.)
    2. Limita funkce. Spojitost funkce. (Definice limity funkce. Pravidla pro výpočet limit funkce. Definice spojitosti. Typy nespojitosti.)
    3. Derivace funkce. (Definice derivace funkce a její geometrický význam. Pravidla pro počítání s derivacemi Diference a diferenciál. Vyšetřování průběhu funkce.)
    4. Neurčitý integrál. (Pojem primitivní funkce Vzorce pro integraci elementárních funkcí. Substituční metoda Metoda per partes.)
    5. Určitý integrál. (Definice Riemannova určitého integrálu. Newton-Leibnizova věta pro výpočet určitého integrálu. Substituční metoda a metoda per partes pro určitý integrál. Geometrické aplikace určitého integrálu.)
    6. Nevlastní integrály. (Nevlastní integrál 1. druhu. Nevlastní integrál 2. druhu. Geometrické aplikace nevlastního integrálu.)
Informace učitele
Požadavky na ukončení:
Zápočet: aktivní práce v seminářích, zápočtová práce.
Zkouška: písemná zkouška, ústní zkouška.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.

  • Statistika zápisu (nejnovější)
  • Permalink: https://is.mvso.cz/predmet/mvso/leto2019/XUIM0164