Diferenciální a integrální počet
RNDr. Vladimíra Mádrová, CSc.
Diferenciální a integrální počet
Cílem předmětu je seznámení studentů s diferenciálním a integrálním počtem funkce jedné a více proměnných a jejich aplikacemi. Student po ukončení semestru správně chápe pojem funkce a uvědomuje si užitečnost funkcí pro popis vztahů mezi jednotlivými veličinami, rozpoznává a charakterizuje základní vlastnosti funkcí. Pro funkce jedné i více proměnných bezpečně určuje definiční obory funkcí, definuje limitu funkce, zná vlastnosti limit a umí počítat limity rozličných funkcí, rozumí pojmu spojitosti funkce. Chápe a umí definovat derivaci funkce, rutinně zvládá výpočet derivací rozmanitých funkcí, chápe geometrický význam derivace. Zvládá aplikaci všech vědomostí diferenciálního počtu. Pro funkci jedné proměnné definuje primitivní funkci a neurčitý integrál, má osvojeny základní integrační metody. Pro funkce jedné a více proměnných rozumí způsobu konstrukce určitého integrálu, ovládá jeho základní vlastnosti a výpočet. Je schopen využít vědomosti integrálního počtu při řešení základních geometrických a fyzikálních úloh.


Zápočet: aktivní práce ve cvičeních, zápočtová práce.
Zkouška: písemná zkouška (min. 50%), ústní zkouška (min. 50%).

Chapter contains:
1
PDF
1
Study text
Teacher recommends to study from 13/2/2023 to 19/2/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 20/2/2023 to 26/2/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 27/2/2023 to 5/3/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 6/3/2023 to 12/3/2023.
Chapter contains:
1
Study Materials
1
Study text
Teacher recommends to study from 13/3/2023 to 19/3/2023.
Chapter contains:
1
Study Materials
1
Study text
Teacher recommends to study from 20/3/2023 to 26/3/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 27/3/2023 to 2/4/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 3/4/2023 to 9/4/2023.
Chapter contains:
1
PDF
1
Study text
Teacher recommends to study from 10/4/2023 to 16/4/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 17/4/2023 to 23/4/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 24/4/2023 to 30/4/2023.
Chapter contains:
1
Study text
Teacher recommends to study from 1/5/2023 to 7/5/2023.

Týden 1

Funkce jedné proměnné. (Vlastnosti funkcí. Elementární funkce a funkce k nim inverzní. Logaritmické
a exponenciální funkce. Cyklometrické funkce.)



Týden 2

Limita funkce. Spojitost funkce. (Definice limity funkce. Pravidla pro výpočet limit funkce. Definice spojitosti. Typy nespojitosti.)

Týden 3

Derivace funkce. (Definice derivace funkce a její geometrický význam. Pravidla pro počítání s derivacemi Diference a diferenciál.)

Týden 4

Aplikace diferenciálního počtu  (l`Hospitalovo pravidlo, vyšetřování průběhu funkce.)

Týden 5

Neurčitý integrál. (Pojem primitivní funkce Vzorce pro integraci elementárních funkcí. Substituční metoda,   metoda per partes.)


Týden 6

Určitý integrál. (Definice Riemannova určitého integrálu. Newton-Leibnizova věta pro výpočet určitého integrálu. Substituční metoda a metoda per partes pro určitý integrál.)

Týden 7

Nevlastní integrály. (Nevlastní integrál 1. druhu. Nevlastní integrál 2. druhu.)

Týden 8

Aplikace integrálního počtu. (Geometrické aplikace určitého a nevlastního integrálu.)

Týden 9

Funkce více proměnných. (Základní definice, limita a spojitost.)

Týden 10

Parciální derivace a totální diferenciál. (Definice, pravidla pro derivování, užití totálního diferenciálu.)

Týden 11

Extrémy funkce více proměnných. (Lokální a  globální extrémy.)

Týden 12

Funkce daná implicitně. (Definice, derivace,  extrémy.)