Domácí úkol YSTA2-02

- Vypracujte v Excelu a GeoGebře.
- Každé rozdělení zpracujte na samostatném (příslušně pojmenovaném) listu.
- Obrázkové výstupy z GeoGebry vložte také do Excelu.
- Sešit Excelu pojmenujte **DU-YSTA2-02.xlsx** a vložte do odevzdávárny (jméno a UČO se do názvu přidá automaticky).
- Termín odevzdání 28. 11. 2024.

1 Binomické rozdělení

Excelovské funkce

Pro práci s binomickým rozdělením lze v Excelu použít následující funkce:

- Pravděpodobnostní funkce (PDF): Funkce BINOM.DIST(k; n; p; FALSE) vrací pravděpodobnost přesně k úspěchů.
- Distribuční funkce (CDF): Funkce BINOM.DIST(k; n; p; TRUE) vrací pravděpodobnost nejvýše k úspěchů.

Příklad 1. Použijte vhodné excelovské funkce k procvičení práce s binomickým rozdělením:

- 1. Vypočítejte hodnoty pravděpodobnostní funkce pro binomické rozdělení sn=10 a p=0,3 pro $k=0,1,\ldots,10.$
- 2. Vypočítejte hodnoty distribuční funkce pro stejné hodnoty k.
- Vytvořte grafy pravděpodobnostní a distribuční funkce pro binomické rozdělení v Excelu. Můžete použít už vypočítané hodnoty.

2 Hypergeometrické rozdělení

Excelovské funkce

Pro práci s hypergeometrickým rozdělením lze v Excelu použít následující funkce:

- Pravděpodobnostní funkce (PDF): Funkce HYPGEOM.DIST(k; n; M; N; FALSE) vrací pravděpodobnost přesně k úspěchů.
- Distribuční funkce (CDF): Funkce HYPGEOM.DIST(k; n; M; N; TRUE) vrací pravděpodobnost nejvýše k úspěchů.

Příklad 2. Použijte vhodné excelovské funkce k procvičení práce s hypergeometrickým rozdělením:

- 1. Vypočítejte hodnoty pravděpodobnostní funkce pro hypergeometrické rozdělení sN=50, $M=20,\,n=10$ pro $k=0,1,\ldots,10.$
- 2. Vypočítejte hodnoty distribuční funkce pro stejné hodnoty k.
- 3. Vytvořte grafy pravděpodobnostní a distribuční funkce pro hypergeometrické rozdělení v Excelu. Můžete použít už vypočítané hodnoty.

3 Normální rozdělení

Excelovské funkce

Pro práci s normálním rozdělením lze v Excelu použít následující funkce:

- Hustota pravděpodobnosti (PDF): Funkce NORM.DIST(x; μ ; σ ; FALSE) vrací hodnotu hustoty pravděpodobnosti.
- Distribuční funkce (CDF): Funkce NORM.DIST(x; μ ; σ ; TRUE) vrací hodnotu distribuční funkce.
- Kvantilová funkce: Funkce NORM. INV (p; μ ; σ) vrací kvantil pro danou pravděpodobnost p, střední hodnotu μ a směrodatnou odchylku σ .

Pro práci s normovaným normálním rozdělením ($\mu = 0, \sigma = 1$) lze použít specializované funkce:

- Hustota pravděpodobnosti (PDF): Funkce NORM.S.DIST(x; FALSE) vrací hodnotu hustoty pravděpodobnosti.
- Distribuční funkce (CDF): Funkce NORM.S.DIST(x; TRUE) vrací hodnotu distribuční funkce.
- Kvantilová funkce: Funkce NORM.S.INV(p) vrací kvantil pro danou pravděpodobnost p.

Příklad 3. Použijte vhodné excelovské funkce k procvičení práce s normálním rozdělením:

- 1. Vypočítejte hodnoty hustoty pravděpodobnosti pro normální rozdělení s $\mu=2$ a $\sigma=3$ a následující hodnoty x=-2,-1,0,1,2.
- 2. Vypočítejte hodnoty distribuční funkce pro normované normální rozdělení a stejné hodnoty x = -2, -1, 0, 1, 2.
- 3. Pomocí funkce NORM.S.INV() najděte kvantily pro pravděpodobnosti p = 0.05; 0.5; 0.95. O jaké rozdělení se jedná? Co nám ty výsledky říkají?
- 4. Vytvořte grafy hustoty a distribuční funkce pro normální rozdělení v GeoGebře s parametry $\mu = 2$ a $\sigma = 3$.

4 Studentovo rozdělení

Excelovské funkce

Pro práci se Studentovým rozdělením lze v Excelu použít následující funkce:

- Hustota pravděpodobnosti (PDF): Funkce T.DIST(x; ν; FALSE) vrací hodnotu hustoty pravděpodobnosti.
- Distribuční funkce (CDF): Funkce T.DIST(x; ν; TRUE) vrací hodnotu distribuční funkce.
- Kvantilová funkce: Funkce T.INV(p; ν) vrací kvantil pro danou pravděpodobnost p a ν stupni volnosti.

Příklad 4. Použijte vhodné excelovské funkce k procvičení práce s rozdělením:

- 1. Vypočítejte hodnoty hustoty pravděpodobnosti pro Studentovo rozdělení s $\nu = 8$ a následující hodnoty x = -2, -1, 0, 1, 2.
- 2. Vypočítejte hodnoty distribuční funkce pro Studentovo rozdělení s $\nu=8$ a stejné hodnoty x=-2,-1,0,1,2.
- 3. Pomocí funkce T.INV() najděte kvantily pro pravděpodobnosti p = 0.05; 0.5; 0.95 při $\nu = 8$. Co nám ty výsledky říkají?
- 4. Vytvořte grafy hustoty a distribuční funkce v GeoGebře s parametrem $\nu = 8$.
- 5. Demonstrujte, v GeoGebře, že "pro velká ν (tzn. pro $\nu \ge 30$) se Studentovo rozdělení blíží normálnímu rozdělení s parametry $\mu = 0, \sigma^2 = \frac{\nu}{\nu-2}$ ".

5 F-rozdělení

Excelovské funkce

Pro práci s F-rozdělením lze v Excelu použít následující funkce:

- Hustota pravděpodobnosti (PDF): Funkce F.DIST(x; ν_1 ; ν_2 ; FALSE) vrací hodnotu hustoty pravděpodobnosti.
- Distribuční funkce (CDF): Funkce F.DIST(x; ν₁; ν₂; TRUE) vrací hodnotu distribuční funkce.
- Kvantilová funkce: Funkce F. INV(p; ν_1 ; ν_2) vrací kvantil pro danou pravděpodobnost p a stupně volnosti ν_1 a ν_2 .

Příklad 5. Použijte vhodné excelovské funkce k procvičení práce s F-rozdělením:

1. Vypočítejte hodnoty hustoty pravděpodobnosti pro F-rozdělení s $\nu_1 = 5$, $\nu_2 = 10$ a následující hodnoty x = 1, 2, 3, 4, 5.

- 2. Vypočítejte hodnoty distribuční funkce pro stejné hodnoty x.
- 3. Pomocí funkce F.INV() najděte kvantily pro pravděpodobnostip=0,05;0,5;0,95 při $\nu_1=5,$ $\nu_2=10.$
- 4. Vytvořte grafy hustoty a distribuční funkce v GeoGebře s parametry $\nu_1 = 5, \nu_2 = 10.$

6 Chi-kvadrát rozdělení

Excelovské funkce

Pro práci s chi-kvadrát rozdělením lze v Excelu použít následující funkce:

- Hustota pravděpodobnosti (PDF): Funkce CHISQ.DIST(x; ν ; FALSE) vrací hodnotu hustoty pravděpodobnosti.
- Distribuční funkce (CDF): Funkce CHISQ.DIST(x; ν ; TRUE) vrací hodnotu distribuční funkce.
- Kvantilová funkce: Funkce CHISQ. INV(p; ν) vrací kvantil pro danou pravděpodobnost p a stupně volnosti ν .

Příklad 6. Použijte vhodné excelovské funkce k procvičení práce s chi-kvadrát rozdělením:

- 1. Vypočítejte hodnoty hustoty pravděpodobnosti pro chi-kvadrát rozdělení s $\nu = 3$ a následující hodnoty x = 1, 2, 3, 4, 5.
- 2. Vypočítejte hodnoty distribuční funkce pro stejné hodnoty x.
- 3. Pomocí funkce CHISQ.INV() najděte kvantily pro pravděpodobnosti p=0.05; 0.5; 0.95při $\nu=3.$
- 4. Vytvořte grafy hustoty a distribuční funkce v GeoGebře s parametrem $\nu = 3$.
- 5. Demonstrujte, v GeoGebře, že "pro velká ν (tzn. pro $\nu \geq 30$) se chi-kvadrát rozdělení blíží normálnímu rozdělení s parametry $\mu = \nu$, $\sigma^2 = 2\nu$ ".