MVŠO:XUEV0106 Mathematics 1 - Course Information
XUEV0106 Mathematics 1
Moravian Business College Olomoucwinter 2012
- Extent and Intensity
- 2/2/0. 4 credit(s).
- Guaranteed by
- Moravian Business College Olomouc
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Množinově logický aparát matematiky. Vektorový a maticový počet. Soustavy lineárních algebraických rovnic. Posloupnosti a řady reálných čísel.
- Syllabus (in Czech)
- Osnova přednášek:
1. Výrokový počet
- výroky a výrokové formy
- kvantifikátory
- výstavba matematické teorie.
2. Množiny
- operace s množinami
- relace a zobrazení
- číselné množiny, zvláště R
- rozšířená reálná osa
- intervaly a okolí bodu.
3. Vektorový počet
- vektory a vektorové operace
- lineární závislost a nezávislost vektorů
- hodnost soustavy vektorů.
4. Maticový počet
- matice a maticové operace
- hodnost matice
5. Determinanty čtvercových matic
- zavedení determinantů a jejich vlastnosti
- výpočet determinantů.
6. Soustavy lineárních algebraických rovnic
- Frobeniova věta
- homogenní soustavy
- Cramerovo pravidlo.
7. Posloupnosti reálných čísel
- různá zavedení posloupnosti
- aritmetická a geometrická posloupnost.
8. Limita posloupnosti
- definice limity posloupnosti
- vlastnosti konvergentních posloupností.
9. Další vlastnosti posloupností
- limity zvláštních posloupností
- monotonní posloupnosti a jejich limita
- výpočet limit posloupností.
10. Číselné řady
- definice součtu číselné řady
- nutná podmínka konvergence řady
- kritéria konvergence řad s nezápornými členy.
11. Číselné řady s libovolnými členy
- absolutní a neabsolutní konvergence řad
- alternující řady.
12. Operace s číselnými řadami
- součet a rozdíl řad, násobek řady
- přerovnání řady
- Cauchyův součin řad.
Osnova cvičení:
1. Výroky
- výroky a výrokové formy, jejich negace
- práce s tabulkou pravdivostních hodnot výroků
- používání kvantifikátorů.
2. Množiny
- množinové operace
- číselné množiny, zvláště množina R a její rozšíření
- intervaly a okolí bodu.
3. Vektory
- operace s n-člennými vektory
- vyšetření lineární závislosti a nezávislosti vektorů
- stanovení hodnosti soustavy vektorů.
4. Matice
- operace s maticemi (součet a násobek)
- násobení matic
- určení hodnosti matice
- výpočet inverzní matice.
5. Determinanty
- výpočet determinantu rozvojem podle prvků některé jeho řady
- Saarusovo pravidlo
- výpočet determinantu uvedením jeho matice na trojúhelníkový tvar.
6. Řešení soustav lineárních rovnic
- eliminační metodou
- Cramerovým pravidlem.
7. Posloupnosti
- způsoby zadání posloupnosti
- úlohy vedoucí na aritmetické (geometrické) posloupnosti.
8. Limita posloupnosti
- stanovení limity posloupnosti podle definice
- výpočet limity posloupnosti užitím vět o limitách.
9. Další vlastnosti posloupností
- vyšetření monotonnosti posloupnosti a její limity
- technika výpočtu limit posloupností.
10. Číselné řady
- nalezení součtu řady podle definice
- rozhodnutí o konvergenci řady pomocí kritérií: srovnávacího, odmocninového a podílových.
11. Řady s libovolnými členy
- vyšetření konvergence alternující řady
- vyšetření absolutní a neabsolutní konvergence řady.
12. Operace s číselnými řadami
- utvoření součtu, rozdílu řad a násobku řady
- nalezení Cauchyova součinu řad
- přerovnání členů řady a rozhodnutí o jejich chování.
- Osnova přednášek:
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Enrolment Statistics (recent)
- Permalink: https://is.mvso.cz/course/mvso/winter2012/XUEV0106